The Riemann Sum and the Definite Integral

We begin our introduction to the Riemann Sum by considering non-negative functions which are
continuous over an interval [a, b]. To simplify the explanation and the calculations, the interval

[a, b] will be divided into subintervals of equal width, and the sample points will correspond to

the right endpoints of the subintervals. A more general/rigorous treatment of the Riemann Sum
may be found in the calculus textbook used by Pure and Applied Science students.

Let the non-negative function y = f(x) be continuous over [a,b] . We divide [a, b] into n

equal subintervals of width



Note: In the following two examples we consider non-negative functions on the interval [a, b].

As explained last page, in such cases the definite integral from a to b is the area under the
curve from a to b (i.e. the area between the curve and the x-axis). The summation formulas in
the appendix will be needed in the solutions of these examples.

4
Example 1  Use the definition of definite integral to evaluate J’ (2x2 + 3) dx .
0

n

We subdivide the interval [0,4] into n equal subintervals of width ~ x -
n
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Until now we have only considered non-negative functions on the interval [a, b]. In what
follows, the function may be negative
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APPENDIX

The following are useful formulas for working with summation notation.
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