
The Riemann Sum and the Definite Integral 
 

We begin our introduction to the Riemann Sum by considering non-negative functions which are 
continuous over an interval [ ]ba, .  To simplify the explanation and the calculations, the interval 
[ ]ba,  will be divided into subintervals of equal width, and the sample points will correspond to 
the right endpoints of the subintervals.  A more general/rigorous treatment of the Riemann Sum 
may be found in the calculus textbook used by Pure and Applied Science students. 
 

Let the non-negative function  ( )xfy =   be continuous over  [ ]ba,  .  We divide  [ ]ba,   into  n  

equal subintervals of width  
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Note:  In the following two examples we consider non-negative functions on the interval  [ ]ba, .  
As explained last page, in such cases the definite integral from  a  to  b  is the area under the 
curve from  a  to  b (i.e. the area between the curve and the x-axis).  The summation formulas in 
the appendix will be needed in the solutions of these examples. 
 

 

Example 1 Use the definition of definite integral to evaluate   ( ) dxx∫ +
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Until now we have only considered non-negative functions on the interval  [ ]ba, .  In what 
follows, the function may be negative
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APPENDIX 
 

The following are useful formulas for working with summation notation. 
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